Search results for "Hydrothermal ageing"
showing 10 items of 13 documents
Effect of sisal and hydrothermal ageing on the dielectric behaviour of polylactide/sisal biocomposites
2017
[EN] The dielectric properties of virgin polylactide (PLA) and its reinforced composites with different weight amounts of sisal fibres were assessed at broad temperature (from - 130 degrees C to 130 degrees C) and frequency ranges (from 10(-2)-10(7) Hz), before and after being subjected to accelerated hydrothermal ageing. The synergetic effects of both the loading of sisal and hydrothermal ageing were analysed by means of dielectric relaxation spectra. The relaxation time functions were evaluated by the Havriliak-Negami model, substracting the ohmic contribution of conductivity. The intramolecular and intermolecular relaxations were respectively analysed by means of Arrhenius and Vogel-Fulc…
Idrothermal ageing of ionizing radiation cured epoxy matrices for carbon fibre composites
2008
Absorption kinetics and swelling stresses in hydrothermally aged epoxies investigated by photoelastic image analysis
2015
Abstract The present work proposes an experimental optical methodology able to measure the transient swelling stresses induced by the water uptake ageing of polymers. In particular, the work describes the implementation of a Photoelastic technique to quantify internal stresses arising during the hydrothermal ageing of cast epoxy samples. The material investigated is a model DGEBA/DDS epoxy system. Curing and post-curing cycles have been optimised in order to obtain a fully cured, high T g , and completely stress free initial condition. Rectangular beam samples were then left in a hydrothermal bath at 90 °C, and regularly monitored by gravimetric and photoelastic analyses. The quantitative e…
Basalt Fibre Composite with Carbon Nanomodified Epoxy Matrix under Hydrothermal Ageing
2021
This work aimed to investigate the effect of hybrid carbon nanofillers (e.g., carbon nanotubes/carbon nanofibers in the ratio 1:1 by mass) over the electrical and flexural properties for an epoxy matrix and corresponding basalt fibre reinforcing composite (BFRC) subjected to full-year seasonal water absorption. Hydrothermal ageing was performed by full immersion of the tested materials into distilled water according to the following model conditions (seasons). The mechanical properties were measured in three-point bending mode before environmental ageing and after each season. Upon environmental ageing, the relative change of flexural strength and elastic modulus of the epoxy and NC was wit…
The durability of carbon fiber/epoxy composites under hydrothermal ageing
2011
Studies on fibre reinforced composites are now receiving greater attention. Industrial applications have been successful in areas like aerospace, automobile, marine, construction and sporting goods. The first generation of epoxy resins for use in carbon fibre composites are able to achieve optimized high stiffness modules and high heat resistance by a high crosslink density, reached through thermal curing. However, these formulations can be very toxic and brittle with low crack resistance, which was a major disadvantage for structural applications. In the last years the use of ionizing radiation as alternative to thermal curing has been proposed as an environmentally friendly process. Furth…
Synthesis od epoxy/carbon fiber composites induced by e-beam. Study of the effect of hydrothermal ageing on thermal and mechanical properties
2010
Accelerated ageing due to moisture absorption of thermally cured epoxy resin/polyethersulphone blends. Thermal, mechanical and morphological behaviour
2011
Abstract A model epoxy resin/anhydride system, modified with a polyethersulfone (PES) engineering thermoplastic toughening agent, has been studied under hydrothermal ageing in order to investigate the modification of the thermal, morphological and mechanical behaviour through dynamical mechanical thermal analysis, SEM microscopy and fracture toughness test respectively. Two different concentrations of the toughening agent were used in the blends and two ageing conditions have been considered, consisting of the immersion of the samples in distilled water at constant temperature of 70 °C for 1 week and for 1 month. Dynamical mechanical thermal analysis results on hydrothermally aged materials…
Review of photoelastic image analysis applied to structural birefringent materials: glass and polymers
2015
Photoelasticity is particularly suitable for the analysis of the stress state in structural materials that are transparent and birefringent. Some techniques of digital photoelasticity (phase shifting and RGB) are applied to the analysis of stress field in two classes of structural materials. The first one consists of tempered glasses, such as those used in the automotive and architectural fields. The second one consists of thermoset polymers, typically used as matrices in fiber reinforced plastic structural composites. The birefringence of such resins is, in particular, exploited to investigate the development of swelling stresses and changes in fracture toughness as induced by water uptake…
Impact of hydrothermal ageing on the thermal stability, morphology and viscoelastic performance of PLA/sisal biocomposites
2016
The influence of the combined exposure to water and temperature on the behaviour of polylactide/sisal biocomposites coupled with maleic acid anhydride was assessed through accelerated hydrothermal ageing. The biocomposites were immersed in water at temperatures from 65 to 85 °C, between the glass transition and cold crystallisation of the PLA matrix. The results showed that the most influent factor for water absorption was the percentage of fibres, followed by the presence of coupling agent, whereas the effect of the temperature was not significant. Deep assessment was devoted to biocomposites subjected to hydrothermal ageing at 85 °C, since it represents the extreme degrading condition. Th…
Hydrothermal ageing of radiation cured epoxy resin-polyether sulfone blends as matrices for structural composites
2010
Abstract The hydrothermal ageing of epoxy–thermoplastic blends, used as matrices for carbon fibre composites, cured by electron beam, has been studied. Two different thermoplastic percentages have been adopted. A suitable choice of both curing process and formulation parameters allows to carry out irradiation at mild temperature with several advantages, coming from a “non thermal” process, for both the final properties of the materials and the environment. Nevertheless the occurring of vitrification phenomena needs the use of a short thermal treatment after irradiation on the already solid materials, in order to complete the cure reactions. Radiation cured epoxy based matrices have been sub…